スマート農業
—農業・農村のイノベーションとサステナビリティ—

農業情報学会 編

農林統計出版
5 リモートセンシング

大政 謙次

リモートセンシングは対象を遠隔から計測する手段で、人工衛星や航空機からの広域観測がよく知られている。天気予報の際に紹介される雲の動きの衛星画像や地図検索の際にでてくる航空写真などはその例である。一方、比較的近距離の場所から対象を計測する場合には画像計測と呼ぶ場合が多いが、離れた場所からを強調したい時には、この場合にもリモートセンシングを使用する。農業分野では、広域観測に加えて、空間解像度が高く、高頻度あるいは連続観測ができる近距離からのリモートセンシングが有用である。

リモートセンシングの特徴は、目で見える可視光だけでなく、目では見えない電磁波を波長別に分光し、対象からの分光反射や放射などの画像を計測する点にある。例えば、可視から近赤外域の分光反射や熱赤外（温度）放射の受動的リモートセンシングは、植物や土壌の情報を得るのに適しており、広域、近距離に関係なく農業分野ではなく用いられる。また、レーザやマイクロ波などを計測対象に照射し、対象までの距離や対象からの反射、蛍光などを計測する能動的な方法も発達してきている。

人工衛星や航空機からの広域リモートセンシングは、長年、土地被覆や地図作成、収量予測、気象予測、農村・環境計画など、農業や環境に関連する分野で幅広く利用されてきた。そして、広域リモートセンシングの技術的トレンドは、高空間解像度化や多チャンネル化、3次元化、能動的センサ利用、高頻度観測、モデルとの同化などである。また、最近では商用やコストを抑えるために目的を絞った小型化のニーズがある。例えば、高空間解像度衛星では、2008年に打ち上げられた米国の商用衛星であるGeoEye-1が、バンクロ画像（450～800nm）で0.41m、4バンド（450～920nm）のマルチスペクトル画像でも1.64mと、従来の航空機からのリモートセンシングに匹敵する空間解像度を有している。また、ハイパースペクトル衛星では、2000年の米国のEO-1衛星（Hyperion：220バンド（430-2400nm）、空間解像度30m）以降、英国やインド、イタリアなどの衛星も打ち上げられており、わが国やドイツでも打ち上げ計画がある。熱赤外センサ搭載衛星としては、1972
年から継続的に打ち上げられているLandsat衛星（現在8号）やTerra衛星のASTERなどがある。地形や森林計測に有用な距離Lidar衛星としては、2003～2009年に運用された米国ICESat衛星があり、ICESat-2やJAXAでも計画がある。

マイクロ波を利用した合成開口レーダ（SAR）は、その波長を選択することにより、雲や降雨の状態の計測や、逆に雲や降雨の影響を受けないので、地表面の情報を得ることができ、ドイツの高空間解像度（1m程度）XバンドSAR衛星（TerraSAR-x）やわが国の10m解像度LバンドSAR衛星（ALOS PALSAR）などがある。高頻度観測としては、解像度が約1.1kmと悪くなるがNOAAのAVHRR（同一地点を1日2回観測、バンド1（0.58〜0.68μm）、バンド2（0.725〜1.1μm）、バンド3（3.55〜3.93μm）、バンド4（10.3〜11.3μm）、バンド5（11.5〜12.5μm））やEOS（NASA）のMODIS（2日に1回観測、0.4〜14.5μm（36バンド）、解像度250m（2バンド）、500m（5バンド）、1000m（29バンド）」がよく利用されている。

このような人工衛星からのリモートセンシングの発達により、従来、衛星画像では困難とされていたわが国の小面積の耕地でも、実用的な利用が可能になっている。しかし、人工衛星からのリモートセンシングには、観測頻度や空間解像度、雲の影響などの問題があり、植物機能の情報を得るには不十分な点が多く、地上観測で得られた知見や地理空間情報システムのデータと併せて、解析やモデリング、検証などを行う必要がある。その際、より自由度のある航空機や他のプラットホームからのリモートセンシングとの併用利用が有用である（図3 - 5 - 1）。航空機に搭載されているリモートセンサには、20cm程度の空間解像度を有するマルチバンドセンサや2mの空間解像度で、可視から近赤外（0.43〜1.0μm）を512バンドで計測できるハイパースペクトルセンサなどのものがある。さらに、衛星測位システム（GNSS: GPS、QZSなど）搭載の簡易な無人飛行機（UAV）や計測車、農作業車、観測車などからの近距離リモートセンシングも普及してきている。

これらのリモートセンシングでは、無線や有線の情報通信技術（ICT）と組み合わせて、オンラインで、高空間解像度の分光反射、温度、蛍光、距離などの画像情報を得ることができる。そして、これらの画像情報を解析することにより、植物の形や構造、含有成分、蒸散、光合成、成長などの植物機能に関するより多くの情報を2次元、あるいは3次元的に得ることができ、基礎科学の分野だけでなく、植物診断や最先端農業技術開発、表現型遺伝子と環境の両面から研究する植物フェノミクス研究などに利用されている。
図 3-5-1 階層的リモートセンシングの概念図

[参考文献]
[9] 久米・大政監訳（2013）「植生リモートセンシング（HG Jones and RA Vaughan著）」、森北出版。