Estimating vertical plant area density profile and growth parameters of a wheat canopy at different growth stages using three-dimensional portable lidar imaging

Fumiki Hosoi, Kenji Omasa *

Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan

A R T I C L E I N F O

Article history:
Received 4 April 2008
Received in revised form 15 September 2008
Accepted 16 September 2008
Available online 18 October 2008

Keywords:
Carbon stock
Plant area density
Portable scanning lidar
Three-dimensional imaging
Voxel-based canopy profiling

A B S T R A C T

Vertical plant area density profiles of wheat (Triticum aestivum L.) canopy at different growth stages (tillering, stem elongation, flowering, and ripening stages) were estimated using high-resolution portable scanning lidar based on the voxel-based canopy profiling method. The canopy was scanned three-dimensionally by laser beams emitted from several measuring points surrounding the canopy. At the ripening stage, the central azimuth angle was inclined about 23° to the row direction to avoid obstruction of the beam into the lower canopy by the upper part. Plant area density profiles were estimated, with root mean square errors of 0.28–0.79 m² m⁻³ at each growth stage and of 0.45 m² m⁻³ across all growth stages. Plant area index was also estimated, with absolute errors of 4.7%–7.7% at each growth stage and of 6.1% across all growth stages. Based on lidar-derived plant area density, the area of each type of organ (stem, leaves, ears) per unit ground area was related to the actual dry weight of each organ type, and regression equations were obtained. The standard errors of the equations were 4.1 g m⁻² for ears and 26.6 g m⁻² for stems and leaves. Based on these equations, the estimated total dry weight was from 63.3 to 279.4 g m⁻² for ears and from 35.8 to 375.3 g m⁻² for stems and leaves across the growth stages. Based on the estimated dry weight at ripening and the ratio of carbon to dry weight in wheat plants, the carbon stocks were 76.3 g C m⁻² for grain, 225.0 g C m⁻² for aboveground residue, and 301.3 g C m⁻² for all aboveground organs.

© 2008 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

1. Introduction

The plant canopy plays important functional roles in cycling materials and energy through photosynthesis and transpiration, maintaining plant microclimates, and providing habitats for various taxa (Eberlirger and Field, 1993; Jones, 1992; Larcher, 2001; Monteith, 1973; Stokes et al., 2006). Determining the vertical structure of the canopy is very important because the three-dimensional (3-D) composition of the canopy helps to sustain those functional roles (Graetz, 1990; Lefsky et al., 2002; Omasa et al., 2007a; Schurr et al., 2006). Thus, many studies have been conducted to measure the vertical structure of plant canopies (Eschenbach and Kappen, 1996; Garber and Maguire, 2005; Hosoi and Omasa, 2006, 2007; Hutchinson et al., 1986; Lefsky et al., 2002; Omasa et al., 2007a; Parker et al., 2004; Radtke and Bolstad, 2001; Sinoquet et al., 1998; Strachan and McLaughy, 1996; Wang et al., 1992; Yang et al., 1993).

In crop canopies, the vertical structure has been investigated and related to characteristics such as light distribution within the canopy, light-use efficiency, amount of yield, growth rate, and nitrogen allocation (Constable, 1986; Imai et al., 1994; Milroy et al., 2001; Sassenrath-Cole, 1995; Takahashi and Nakaseko, 1993; Yunusa et al., 1993). As noted in those studies, it is important to account for changes in the vertical structure of crops accompanied with canopy growth over time. The vertical canopy structure is often represented by leaf area density (LAD) in each horizontal layer, which is defined as one-sided leaf area per unit of horizontal layer volume (Weiss et al., 2004). The leaf area index (LAI) is then calculated by vertically integrating the LAD profile data. When it is difficult for leaves and other aboveground organs (e.g., stems, ears) to be separated, then rather than LAD or LAI, plant area density (PAD) or plant area index (PAI) are used.

To obtain LAD and PAD, stratified clipping of leaves has been used as a direct method (Imai et al., 1994; Milroy et al., 2001; Takahashi and Nakaseko, 1993). Although this direct method offers accurate results, its application to crop measurement is often limited because it is very labor intensive and its destructive nature does not permit the measurement of intact crop structure as plants change over time with growth, which is an important parameter in crop studies. 3-D digitizing by ultrasonic or electromagnetic devices has been used as another direct method. A pointer is located at the position of each plant component and geometric
information is recorded as 3-D spatial coordinates (Drouet et al., 1999; Sinoquet et al., 1991, 1998, 2007; Thanisawanyangkura et al., 1997). Although this technique allows measurement of the detailed 3-D structure of plants, including the vertical structure, through nondestructive means, this method is also labor intensive because numerous components must be measured manually, point by point. Therefore, this method is also unfeasible for repeated measurements to capture the temporal changes of crop structure with growth. As an indirect method, the gap-fraction method has been widely applied to crop measurement and uses commercially available tools such as cameras with fish-eye lenses and optical sensors (e.g., the Li-Cor LAI-2000 plant canopy analyzer; Behrens and Diepenbrock, 2006; Bréda, 2003; Grantz et al., 1993; Hanan and Bégué, 1995; Levy and Jarvis, 1999; Sassenrath-Cole, 1995; Welles and Cohen, 1996). This method allows automatic data collection and nondestructive measurement of canopy structure by using light transmittance through the canopy. The shortcoming is that the accuracy of the measurement is affected by the spatial distribution of leaves and by sunlight conditions (Chason et al., 1991; Jonckheere et al., 2004).

Light detection and ranging (Lidar), which is an active remote-sensing technique that uses a laser scanner, has been applied to canopy measurements (Brandtberg et al., 2003; Harding et al., 2001; Holmgren and Persson, 2004; Hosoi et al., 2005; Hosoi and Omasa, 2006, 2007; Hyppä et al., 2001; Lefsky et al., 2002; Næsset et al., 2004; Omasa et al., 2000, 2002, 2003, 2007a, b; Riano et al., 2003). Lidar can measure the distance between the sensor and a target based on the elapsed time between the emission and return of laser pulses (the time-of-flight method) or based on trigonometry (the optical-probe or light-section methods), so that 3-D information of the target can be obtained. Several researchers have attempted to measure vertical foliage profiles using portable ground-based nonscanning lidar (Park et al., 2004; Radtke and Bolstad, 2001). At present, portable ground-based scanning lidar is more often used for the measurement because it allows more efficient data collection than the nonscanning type (Henning and Radtke, 2006; Hosoi and Omasa, 2006, 2007; Lovell et al., 2003; Omasa et al., 2002, 2007a, b; Takeda et al., 2005; Tanaka et al., 2004; Urano and Omasa, 2003; Van der Zande et al., 2006).

Portable ground-based scanning lidar has several beneficial features. For instance, it is nondestructive and, because it is an active sensor, measurements are not affected by the light conditions in the field. Many 3-D data for a crop can be recorded quickly and automatically as 3-D point-cloud data. Finally, portable ground-based scanning lidar is suitable for repeated measurements over time due to its efficient data collection and portability. Thus, this technology promises to overcome the shortcomings of the conventional means of measuring the vertical structure of crops. However, portable scanning lidar has been used mainly for measurement of forest canopies and hardly has been utilized for crop measurement, because many crops have small canopies and most of the commercially available portable lidar systems were insufficient for the detailed measurement of crop canopy in terms of scan and range resolution (typically ~cm). Recently, we demonstrated that the vertical LAD profile of small individual trees and 3-D shapes of individual vegetable crops can be measured accurately using high-resolution portable scanning lidar, which has a range resolution of about 1 mm at a measurement range of about 5 m (Hosoi and Omasa, 2006; Omasa et al., 2007a). These findings suggest that high-resolution portable scanning lidar would provide accurate estimation of the vertical structure of crops. In this study, the vertical canopy profiles of a crop (wheat, Triticum aestivum L.) were estimated at different growth stages using high-resolution portable scanning lidar. PAD was the variable used to express the vertical canopy profile. The estimation results were compared with directly measured values to validate the approach. PAD was also estimated by integrating the PAD estimates vertically and was compared with the directly measured value. Based on our findings, ways to obtain growth parameters related to the lidar-derived PAD, namely the dry weight of each organ type and carbon stocks were proposed.

2. Material and methods

2.1. Plant material

The experiment was conducted at an experimental farm in Ibaraki Prefecture, 40 km northeast of central Metropolitan Tokyo, Japan (36°03′N, 140°04′E), Winter wheat (T. aestivum cv. Norin 61) seeds were sown on 2 November 2005 using 90 kg seed grain/ha and 50-cm row spacing. Four plots (1 m × 1 m, see Fig. 1A) were established on the farm for measurements of four different growth stages.

2.2. Direct measurements

To obtain validation data, LAD and PAD values were directly measured in each horizontal layer by stratified clipping within each plot on 6 April, 26 April, 16 May, and 5 June 2006 (155, 175, 195, and 215 days after sowing [DAS], respectively), which corresponded to the tillering, stem elongation, flowering, and ripening stages, respectively. On each measurement date, all the plants within each plot were clipped at each 10-cm thickness horizontal layer and the clippings were separated into each type of aboveground organ (leaf, stem, and ear). Areas of leaf, stem, and ear in each horizontal layer were measured using a commercially available desktop scanner (FB636U, Canon, Inc., Japan); each type of organ in each layer was scanned as a JPEG image (826 × 1165 pixels) and the areas were determined by multiplying the number of pixels of each type of organ in each layer by the area per pixel (Hosoi and Omasa, 2006). PAD of each type of organ in each layer, which is defined as the projected area of each type of organ per unit of horizontal layer volume, was derived by dividing the area of each organ type by the horizontal layer volume (0.1 m³: 1 m × 1 m in horizontal area × 0.1 m in thickness). PAI was obtained as the vertical integration of PAD of all organs. LAD was also obtained by vertically integrating PAD of leaves (i.e., LAD). In addition, to examine the proportion of PAD of each organ type over time, the PAD values of each organ type were averaged vertically at each growth stage, and the ratio of the mean PAD of each organ type to that of all organs was calculated at each growth stage. After the PAD measurement, all of the organs were dried in an oven at 80 °C for 3 days, and the dry weight of each type of organ in each layer was measured.

2.3. Lidar measurements

A portable high-resolution scanning lidar that calculates distances based on trigonometry (a modified TDS-130L 3-D laser scanner; Pulstec Industrial Co., Ltd., Japan) was used to measure the canopy structure. The measurement was carried out prior to the destructive sampling described above. The lidar’s measurable range is 3.5–10 m. The range and scan resolutions are about 1 and 2 mm, respectively, at a measurement range of about 5 m. A rotating mount with a stepper motor and a galvano mirror within the lidar head automated the horizontal and vertical scanning. Fig. 1A illustrates an aerial view of the wheat canopy measurement by the portable scanning lidar, with several scanning positions surrounding the canopy. Arrows A1–A4 and B1–B4 in Fig. 1A show the directions corresponding to the central azimuth angles of laser beams (ϕ, in Fig. 1A) emitted from each of the
measurement positions. In this study, the azimuth angle was defined as the angle between azimuth direction of a laser beam and row direction. The central azimuth angle refers to the central angle of the azimuthal laser beam scan. Fig. 1B shows a side view of the wheat canopy measurement. A lidar head was placed at a height of 2.5 m and the central zenith angle (θ₀), which is the center of the angle of the zenith laser beam scan, and its scan angle (Δθ) were set to 57.5° and 5°, respectively.

On 6 April, 26 April, and 16 May, directions A1 to A4, which inclined about 23° to the row direction (corresponding to α = 23° in Fig. 1A), were applied to increase the number of laser beams that reached the lower layers of the canopy.

2.4. Computation of plant area density

PAD computation used the Voxel-based Canopy Profiling method (VCP method; Hosoi and Omasa, 2006). The complete data set for each date was composed of point-cloud data obtained from each of the four central azimuth angles of laser beams. The individual coordinate systems for these data were registered into a single point-cloud data set with a common 3-D coordinate system for each measurement date using the iterative closest-point algorithm (Besl and McKay, 1992). All points in the registered data set were converted into voxel coordinates for each measurement date. In this experiment, voxel element size, which depended on the range and scan resolution of the lidar, was set to 1 mm. The selection of the voxel element size comparable to the lidar resolution (about 1 and 2 mm) is necessary for the lidar data to be faithfully reproduced as voxels in the voxel array. Voxels converted from points within the registered data set were assigned 1 as the attribute value. Next, all laser beams emitted from the lidar positions were traced within the voxel array in accordance with the actual laser beam angles. Voxels through which one or more laser beams passed without touching the canopy were assigned 2 as the attribute value (see Hosoi and Omasa (2006)).

Based on the attribute values, PAD was computed in each horizontal layer using the following equation:

$$PAD = \frac{\cos \theta_0}{G(\theta_0)} \cdot \frac{1}{\Delta H} \sum_{k=m_0}^{m_0+\Delta m} \frac{n_k(k)}{n_0(k) + n_0(k)}.$$ \hspace{1cm} (1)

Eq. (1) is derived from the equation for LAD in Hosoi and Omasa (2006). In Eq. (1), LAD was replaced with PAD and θ₀ is the central zenith angle of laser beams. n₀(k) and nₓ(k) are the numbers of voxels with attributes of 1 and 2 in the kth horizontal layer of the voxel array, respectively. n₀(k) and nₓ(k) represent the number of laser beams intercepted by canopy in the kth layer and the number of laser beams that passed through the kth layer, respectively. Thus, n₀(k) + nₓ(k) represents the total number of incident laser beams that reach the kth layer. ΔH is the horizontal layer thickness (=0.1 m), and m₀ and m₀+Δm are the voxel coordinates on the vertical axis equivalent to the height h and h + ΔH in orthogonal coordinates (h = n₀ × Δk). G(θ₀) is the mean projection of a unit leaf area on a plane perpendicular to the direction of the laser beam at θ₀ (Jonckheere et al., 2004; Norman and Campbell, 1989; Weiss et al., 2004; Welles and Norman, 1991). Eq. (1) is analogous to the equation of radiation transfer through canopy in the case of neglecting the scattering term (Anisimov and Fukshansky, 1993; Ross, 1981). n₀(k) + nₓ(k) and n₀(k) in Eq. (1) correspond to the radiation intensity and the attenuation of the radiation intensity in the radiation transfer equation. The term cos(θ₀)[G(θ₀)]⁻¹ is a correction factor for the influence of leaf inclination angle and laser beam direction. Normally, measurement of the distribution of leaf inclination angles is required to determine the correction factor of cos(θ₀)[G(θ₀)]⁻¹. However, the central zenith angle of 57.5° used in this study was the particular angle at which cos(θ₀)[G(θ₀)]⁻¹ can be considered nearly independent of leaf inclination, so the correction factor was approximated by the constant value of 1.1 (Jonckheere et al., 2004; Warren-Wilson, 1960; Weiss et al., 2004). From the PAD estimates computed for each horizontal layer, the vertical PAD profile for each measurement date was obtained and compared with the directly measured one. The PAI estimate at each growth stage was obtained by vertical integration of PAD estimates and compared with the directly measured value.

2.5. Estimation of dry weight and carbon stock from lidar-derived plant area density

Ears had developed in the upper layers on 16 May and 5 June. By multiplying the lidar-derived PAD at the upper layers by the ratio of ear to total surface area of each layer on each date obtained from direct measurements, the PAD estimates corresponding to ears were separated. The PAD was converted into area of ears per unit ground area in each horizontal layer by multiplying the PAD values by layer thickness (=0.1 m). The lidar-derived area of ears...
was correlated with the corresponding actual ear dry weight, and a regression equation and standard error were obtained. By applying each lidar-derived area of ears to the regression equation, the estimate of ear dry weight in each layer was obtained. Estimates of total dry weight of ears for 16 May (flowering) and 5 June (ripening) were obtained by summing up the estimated dry weight of each layer for each date.

The lidar-derived total area of stems and leaves at each growth stage was obtained by multiplying the lidar-derived PAD by the layer thickness and integrating the values vertically at each growth stage. The total area of stems and leaves on 16 May and 5 June was calculated by subtracting the PAD value of ears from the total for each date. The lidar-derived area of stems and leaves was correlated with the corresponding actual stem and leaf dry weight, and a regression equation and standard error were calculated. By applying each lidar-derived total area of stems and leaves to the regression equation, estimates of the total dry weight of leaves and stems at each growth stage were obtained.

The grain dry weight estimate for 5 June (ripening stage) was separated from the total ear dry weight estimate for that date by using the ratio of grain to ear, 0.7 (Kernan et al., 1984; Sivakumar et al., 2001). The carbon stock within the grain was estimated by multiplying the grain dry weight by the ratio of carbon to dry weight in wheat grain, 0.39 (Huang et al., 2007). Chaff dry weight estimate (i.e., ear dry weight minus grain dry weight) and the total dry weight estimate of leaves and stems on 5 June were summed to obtain the dry weight estimate of aboveground residue. The carbon stock within the aboveground residue on 5 June was estimated by multiplying the dry weight by the ratio of carbon to dry weight in the residue, 0.49 (Huang et al., 2007; IPCC, 2000). By adding the carbon stocks of grain to that of the residue, the total amount of aboveground carbon stock on 5 June was obtained.

3. Results and discussion

The directly measured values of PAD and dry weight of each type of organ are shown in Fig. 2. PAD was distributed at low heights on 6 April (Fig. 2A), but the height distribution expanded upward with stem elongation (Fig. 2B–D). Peaks in the PAD distribution were observed in the lower part of the canopy on 16 May and 5 June and ears shared the upper part of the canopy at those stages (Fig. 2C, D). The proportion of PAD of each organ type changed according to stem and ear development over time (Fig. 3). While leaves accounted for the greatest proportion at the tillering and stem elongation stages (6 and 26 April), the proportion of leaves decreased and that of stems and ears increased at the flowering and ripening stages (16 May and 5 June). The change of the proportion occurred because the development of leaves had already stopped during the latter two stages but stems and ears continued to develop. The values of PAI on 6 April, 26 April, 16 May, and 5 June were 0.90, 2.21, 2.50, and 2.94 m² m⁻², respectively, and the values of LAI on these dates were 0.83, 1.70, 1.37, and 1.38 m² m⁻², respectively. The dry weight in each layer changed as the canopy grew (Fig. 2). The contribution of leaves to total dry weight was less than that of other organs, except on 6 April. During the flowering and ripening stages, most of the dry weight
Fig. 4. A 3-D image of wheat canopy on 16 May measured by high-resolution portable scanning lidar. This image was obtained after registration of the images measured by the four central azimuth angles of laser beams (A1–A4 in Fig. 1A). Shading effect was added to this image by changing brightness of each point.

Fig. 5. Comparison of profiles among lidar-derived PAD, directly measured PAD, and directly measured LAD at each growth stage: (A) 6 April, 155 DAS, tillering stage; (B) 26 April, 175 DAS, stem elongation; (C) 16 May, 195 DAS, flowering; (D) 5 June, 215 DAS, ripening.

was composed of ears and stems. The values of total dry weight of all organs on 6 April, 26 April, 16 May, and 5 June were 33.4, 143.8, 345.0, and 606.6 g m$^{-2}$, respectively. Total ear dry weights for 15 May and 5 June were 76.4 and 292.1 g m$^{-2}$.

Fig. 4 shows a 3-D lidar image of the wheat canopy on 16 May after registration of the images measured by the four central azimuth angles of laser beams (A1–A4 in Fig. 1A). In the image, shading effect was added by changing brightness of each point. Each leaf shape is distinguishable due to the precise image obtained by high-resolution portable lidar.

Profiles of the lidar-derived PAD estimates and directly measured PAD and LAD are compared in Fig. 5. Changes in the vertical PAD profiles that accompanied the development of plant organs (i.e., leaf development, Fig. 5A, B; stem elongation, Fig. 5B, C; ear development, Fig. 5C, D) was captured well by the accurate PAD estimates, except for underestimation of the lower layers on 6 and 26 April and 16 May. On 5 June, such an underestimation of the lower part was hardly observed, while a slight overestimation was observed in the upper region (≥60-cm height). The root-mean-square errors (RMSE) of PAD estimates were 0.38, 0.79, 0.28, and 0.35 m2 m$^{-3}$ for 6 April, 26 April, 16 May, and 5 June, respectively, and 0.45 m2 m$^{-3}$ across all the growth stages. Absolute errors of PAI estimates were 6.5%, 5.6%, 7.7%, and 4.7% for these dates, respectively, and 6.1% across all the growth stages. Fig. 6 illustrates the overall relationship between directly measured and lidar-derived PAD across all the growth stages; the lidar-derived values agreed well with the directly measured values ($R^2 = 0.95$).

The following quadratic regression equation shows the relationship between ear dry weight DW_e (g m$^{-2}$) and lidar-derived area of ears per unit ground area A_e (m2 m$^{-2}$):

$$DW_e = 4854.4A_e^2 + 202.3A_e$$ (2)

Fig. 6. Relationship between directly measured and lidar-derived PAD through all growth stages. RMSE, root-mean-square error.

\[R^2 = 0.96, \text{SE} = 4.1 \text{ g m}^{-2}; \text{Fig. 7A}. \] Using Eq. (2), the total ear dry weight was estimated as 63.3 and 279.4 g m\(^{-2}\) for 16 May and 5 June, respectively. The following regression equation represents the relationship between dry weight of stems and leaves and lidar-derived area of stems and leaves per unit ground area \(A_{s+i} \) (m\(^2\) m\(^{-2}\)):

\[DW_{s+i} = 12.714 \exp(1.228A_{s+i}). \]

\[R^2 = 0.94, \text{SE} = 26.6 \text{ g m}^{-2}; \text{Fig. 7B}. \] From Eq. (3), the total dry weight of stems and leaves was estimated as 35.8, 164.7, 183.7, and 375.3 g m\(^{-2}\) for 6 April, 26 April, 16 May, and 5 June, respectively. Based on these dry weight estimates, the carbon stock of grain on 5 June was estimated to be 76.3 g C m\(^{-2}\) and that of aboveground residue was 225.0 g C m\(^{-2}\), such that the total amount of carbon stocks for all aboveground organs on 5 June was estimated to be 301.3 g C m\(^{-2}\).

We previously reported that several measurement points surrounding the canopy and optimally inclined laser beams facilitate full laser beam penetration into the internal canopy, resulting in accurate estimation of the vertical canopy profiles (Hosoi and Omasa, 2006). This was also the case in the present study, as shown by the overall agreement between directly measured and lidar-derived PAD values (Figs. 5 and 6). Having the laser beams inclined at a central zenith angle of 57.5° served well not only for laser beam penetration but also for effective correction of leaf inclination without leaf angle measurements (Hosoi and Omasa, 2006, 2007; Jonckheere et al., 2004; Weiss et al., 2004). At the lowest layers on 6 and 26 April, it appears that there was an insufficient number of laser beams reaching the stems located in the inner canopy; on these dates leaves with the high LAD values in the lower layers would cause obstruction to laser beam penetration into the internal canopy. On 16 May, directly measured LAD values in the lower layers decreased compared with those on 6 and 26 April (Fig. 2C). Although this would facilitate laser beam penetration into the internal canopy of the lower layers, the upper part of the canopy began to obstruct laser beam incidences into the lower layers, in particular for the laser beams directed along A2 and A4 (Fig. 1A).

Fig. 8 illustrates the effects of canopy height and row spacing on laser beam obstruction. At short canopy height, laser beams can reach from the upper to the lower part of the canopy (Fig. 8A). As the canopy grows taller, however, laser beams cannot reach the lower part of the canopy because the upper part obstructs the beam (Fig. 8B). The case in Fig. 8A satisfies the following condition:

\[h \leq \frac{\Delta L}{\tan \theta_i} \]

where \(h \) is the canopy height, \(\Delta L \) is the row spacing, and \(\theta_i \) is the central zenith angle of the laser beams. In this case, the zenith angles of all incident laser beams are approximated by \(\theta_i \). Thus, underestimation of PAD in the lower layers on 16 May (Fig. 5C) would be due to obstruction of the beams by the upper canopy. However, obstruction by the upper canopy can be avoided if the row spacing is expanded such that condition (4) is satisfied (see Fig. 8C). In the present study, instead of expanding row spacing, on 5 June the directions of the central azimuth angles were inclined about 23° with respect to the row direction (B1–B4 in Fig. 1A). In this configuration, effective row spacing \(\Delta L_e \) (Fig. 1A) is expressed as follows:

\[\Delta L_e = \frac{\Delta L}{\sin \alpha} \]

where \(\alpha \) is the angle between the laser beam direction and the row direction. \(\Delta L_e \) was estimated to be 2.6 times longer than \(\Delta L \) when \(\alpha = 23^\circ \), as in the present experiment. That is, changing the azimuth inclination of the laser beam with respect to the row direction would have the same effect as expanding the row spacing. This change likely led to the improvement of PAD estimates in the lower layers on 5 June. The condition of \(\alpha \) necessary to avoid obstruction by the upper canopy (\(\alpha_c \)) is given by replacing \(\Delta L \) in Eq. (4) with \(\Delta L_e \) in Eq. (5), as follows:

\[\alpha \leq \alpha_c = \arcsin \left(\frac{\Delta L_e}{h \tan \theta_i} \right) \]

In the measurement on 5 June, \(\alpha_c \) was calculated as 21°. The measurement positions and angular setting of lidar on 5 June were determined based on the criterion that \(\alpha \) be as close as possible to \(\alpha_c \).
part of the canopy. (B) At tall canopy height, laser beams cannot reach the lower part of the canopy. (C) By expanding row spacing, laser beams can reach the lower part of the canopy.

4. Conclusion

The present findings indicate that the dry weight of ears, leaves and stems can be estimated from the regression equation between the dry weight and lidar-derived area of each type of organ. Dry weight estimates can provide useful information about the growing conditions of crops, and lidar-derived data can be used for more effective agricultural management.

Accurate estimation of carbon stocks in plants is important not only to study photosynthetic characteristics but also to estimate global carbon budget affected by recent increase in atmospheric CO$_2$ concentration that causes global changes. Thus far, lidar has been used mainly for the estimation of forest carbon stocks (Kotchenova et al., 2004; Lim et al., 2003; Omasa et al., 2002, 2003; Patenaude et al., 2004). However, the present study showed that portable scanning lidar also can be used to estimate carbon stocks in a crop canopy. Thus, lidar-derived data sets can be utilized for the estimation of carbon budgets in agricultural regions.

This study demonstrated that vertical PAD profiles of a crop (wheat) canopy at different growth stages can be estimated by high-resolution portable scanning lidar based on the VCP method. In addition, the dry weight and carbon stocks of each organ type can be estimated based on the PAD-derived area of each organ type and the relationship between dry weight and area. To enhance the applicability of portable scanning lidar on estimation of PAD and other growth parameters, additional studies that apply the present method to different growing conditions in other fields and different kinds of crops are needed. Moreover, processing lidar data with additional information, such as shape, color, and texture, may allow lidar data to separate out each organ type so that PAD may be estimated for each organ type. In particular, ears have a distinctive shape and color compared with other organs, so the use of this additional information might allow the efficient separation of ears from other plant organs.

References

